

Geometrische Auflösungen in der PV-Thermografie aus technischer und wirtschaftlicher Sicht

Bernhard WEINREICH, Björn SCHAUER, Thomas REICH

Solarschmiede GmbH, München, Abteilung Thermografie, Schwanthaler Str. 75a, D-80336 München, Tel: +49 (0)89/9901384-26, Fax: +49 (0)89/9901384-9, weinreich@solarschmiede.de, <u>www.solarschmiede.de</u>

Kurzfassung

Die thermografische Untersuchung von Photovoltaik (PV) - Generatoren im MegaWatt -Maßstab hat sich in den letzten Jahren als Mittel zur Qualitätssicherung weitgehend etabliert. Trotz einer nachgewiesenen Erfolgsquote [1], ist aber davon auszugehen, dass bisher weniger als 10 % aller MW-Anlagen einer ordentlichen Thermografie unterzogen wurden. Verantwortlich hierfür sind, neben der nach wie vor bestehenden Unkenntnis über die Potentiale [2], die relativ hohen Vermessungskosten. Die Herausforderung für die PV-Thermografie bestand in den letzten 3 Jahren darin, die Vermessungskosten analog zu den Preisen für Solaranlagen zu halbieren. Für eine weitere Verbreitung der Technik werden zusätzliche Kostensenkungen erforderlich sein. Ein entscheidender Faktor ist hierbei stets eine an technische und wirtschaftliche Erfordernisse angepasste geometrische Auflösung zu finden mit der PV - Generator zu vermessen sind.

Im Rahmen eines 2013 startenden Vornormenprojekts [3] zur PV-Thermografie und einer vorangegangen Feldstudie [1] will der Beitrag die spezifischen Anforderungen an die Vermessung an PV-Generator diskutieren. Dabei soll auch aufgezeigt werden welche bestehenden Regeln aus der Elektro-Thermografie übernommen werden können und in welchen Bereichen die Eigenheiten photovoltaischer Systeme entscheidend sind. Bei einer konkreten Betrachtung der technischen Umsetzbarkeit der gefundenen Anforderungen sollen unteranderem auch die aktuellen Möglichkeiten der luftgestützten Thermografie in der PV dargestellt werden.

Referenzen

[1] B. Weinreich, B. Schauer, S. Seidl, E. Schubert, R. Haselhuhn "Feldstudie zur Modul- und Generatorqualität auf Basis thermografischer Messungen über 100 MW", PV-Symposium Kloster Banz, Bad Staffelstein 2013 / Poster B04

[2] B. Weinreich, Über 30 Tagesschulungen und Vorträge zur PV-Thermografie auf Workshops und Konferenzen bei DGS-Berlin / -Franken e.V., InfraTec GmbH, GE Research Garching, TÜV Rheinland, OTTI e.V., VATh e.V., Hochschule München, IBC Solar AG, Tritec AG, Phoenix Solar AG, Gehrlicher Solar AG, Schletter GmbH

[3] B. Weinreich, Initiator des DKE/INS-Vornormenprojekts: "Erarbeitung einer Norm bzw. Anwendungsregel zur thermografischen Messung an Photovoltaik-Anlagen"

[VATh-13] Verband für Angewandte Thermografie (VATh), "VATh-Richtlinie Elektro Hochspannung, Tabarz 2013"

[Vol-10] Vollmer M., Möllmann K., "Infrared Thermal Imaging, Fundamentals, Research and Applications" WILEY-VHC Verlag GmbH 2010

s. Exkur 1) Ursa	s: PV-thermografische achen für Leistungs	Feldstudi verluste	ie (Posterl im Deta	nil (Skript)		
	Utisch 44 inak- 20 W Modulen Installationsfehler					
Modultiscl it 12 x 4 in /en 220 W egen Insta	n ak- Modulen lationsfehler					
Modultiscl it 12 x 4 in ven 220 W egen Insta Verluste in kW	n ak- Modulen Ilationsfehler Fehler - Kategorie: Verluste durch Installation und Betrieb	Verluste in %	Verluste in kW	Fehler - Kategorie: Verluste durch Modulfehler	Verlus in %	
Modultisch it 12 x 4 in ven 220 W egen Insta Verluste in kW 456	ak- Modulen Ilationsfehler Fehler - Kategorie: Verluste durch Installation und Betrieb Installationsfehler	Verluste in % 0,48%	Verluste in kW 76	Fehler - Kategorie: Verluste durch Modulfehler Substring (Leerlauf)	Verlus in % 0,08%	
Modultiscl it 12 x 4 in ven 220 W egen Insta Verluste in kW 456 562	Aak- Modulen Ilationsfehler Fehler - Kategorie: Verluste durch Installation und Betrieb Installationsfehler WR-Ausfalle	Verluste in % 0,46% 0,56%	Verluste in kW 76 13	Fehler - Kategorie: Verluste durch Modulfehler Substring (Leerlauf) Substrings (Kurzschluss)	Verlus in % 0,08% 0,01%	
Modultiscl it 12 x 4 in /en 220 W egen Insta Verluste in kW 456 562 155	Ak- Modulen Ilationsfehler Fehler - Kategorie: Verluste durch Installation und Betrieb Installationsfehler WR-Ausfalle Sicherungs- / Kontaktfehler	Verluste in % 0,46% 0,56% 0,15%	Verluste in kW 76 13 11	Fehler - Kategorie: Verluste durch Modulfehler Substring (Leerlauf) Substrings (Kurzschluss) Zellen erwärmt	Verlus in % 0,08% 0,01% 0,01%	
Modultiscl it 12 x 4 in ren 220 W egen Insta Verluste in kW 456 562 155 151	Ak- Modulen lationsfehler Fehler - Kategorie: Verluste durch Installation und Betrieb Installationsfehler WR-Ausfalle Sicherungs- / Kontaktfehler sonst. Betriebsführung	Verluste in % 0,46% 0,56% 0,15% 0,15%	Verluste in kW 76 13 11 12	Fehler - Kategorie: Verluste durch Modulfehler Substring (Leerlauf) Substrings (Kurzschluss) Zellen erwärmt Brüche (Zell-, Brösel-, Glas)	Verlus in % 0,08% 0,01% 0,01% 0,01%	

4. Bestimmung ei	<mark>ner sinnvoller</mark>	n geometrischen Au	<mark>iflösung</mark>	- John Carl			
Herangehensweise an die Berechnung der geom. Auflösung							
1. Schritt: Bestimmung der Auffindungspriorität für die 3 Fehlerkategorien:							
Fehlerkategorie	Fehlerkategorie Auffinden des Fehlers hat Priorität wegen:						
	Häufigkeit des Fehlers im Feld	Konsequenzen und Entwicklungspotential	Informationswert für Instandsetzung	Prioritäts- punkte			
I) Anschlussdose	4	2	3	9			
ll) Lötpunkt	1	2	1	4			
III) Zellbruch	2	1	1	4			
2. Schritt: Bestimmung einer maximal akzeptablen Gesamtmessunsicherheit Wie ungenau darf das Ergebnis sein bevor es wertlos wird?							
3. Schritt: Bestimmung der Sensitivität der Fehler auf geometrische Auflösung Wie stark steigt die Messunsicherheit bei sinkender geometrischer Auflösung?							
4. Schritt: Zusammenfassung und Berechnung einer sinnvollen geom. Auflösung							
Copyright 2013 • Bernhard Weinreich • Solarschmiede GmbH • DGZfP Thermografie-Kolloquium 2013 • Seite 18							

4. Bestimmung einer sinnvollen geometrischen Auflösung						
2. Schritt: Maximal akzeptable Messunsicherheit (Skript)						
In Gutachten übliche Einteilung in 4 Fehlerkategorien (Solarschmiede und VATh)						
Bewertungsklassen der Solarschmiede GmbH Bektrische Fehler; Grenzübertemperaturen für die Thermografische bzw. elektrische Fehler; Grenzübertemperaturen für die Thermografie werden für jeden Fehlertyp individuell berechnet, oder VATh-Richtlinien verwendet)						
Zur Kenntnisnahme Keine Maßnahmen erforderlich						
Empfehlung Auffälligkeit langfristig beobachten bzw. bei Gelegenheit der Ursache nach	it langfristig beobachten bzw. bei Gelegenheit der Ursache nachgehen					
Mangel Fehler beseitigen	eitigen					
Sicherheitsrelevanter Mangel Fehler zeitnah beseitigen						
Fehler- Auf Nennbelastung hoch- Erforderliche Maßnahmen nach VATh-Richtlinie zur						
gruppe gerechnete Übertemperaturen Elektrothermografie, Bereich Hochspannung						
1 0 K < ΔT < 10 K Keine akuten Maßnahmen erforderlich, aber Fehbeobachten	lerstelle					
2 10 K < ΔT < 35 K Schwachstelle bei der nächsten Wartung	ng der					
3 35 K < ΔT < 70 K Überprüfung der Ursache einschließlich Beseitigur Schwachstelle bei einer Abschaltung, innerhalb von 1 Mona	ng der t					
4 ΔT > 70 K Kurzfristige Außerbetriebnahme, Überprüfung der einschließlich Beseitigung, Belastungen ggf. verringern	Ursache					
Copyright 2013 • Bernhard Weinreich • Solarschmiede GmbH • DGZfP Thermografie-Kolloquium 2013 • Seite 19						

4. Bestimmun	g einer sinnvollen geometrischen Auflösung	•				
4. Schritt: Rückwärtsberechnung der geom. Auflösung						
 Anschlusson Sie haben ihre Unsion 	 Anschlussdosenfehler sind f ür die geometrische Aufl ösung entscheidend: Sie haben (nach Schritt 1) die gr ößte Auffindungspriorit ät und ihre Unsicherheit beim Hochrechnungsfaktor - f_{Imax/I} ist am gr ößten 					
Aus der Zielvorgabe (aus Schritt 2), einer maximalen Unsicherheit von 33 % bei einem ΔT von 53 K, lässt sich im Beispiel auf die noch tolerierbare Unsicherheit für die geometrische Auflösung zurückrechnen.						
Temperatur-H	Temperatur-Hochrechnung (HR) mit Fehlerfortpflanzung für AD bei 900 W/m ²					
Zeichen	Beschreibung	Wert	2σ			
$\Delta T_{\text{AD-Glas}}$	Messwert: Glasübertemperatur über AD	3,5 K	+/- 5 %			
x f _{Imax/I}	HR-Faktor auf Nennbelastung	1,18	+/- 5 %			
x f _{Innen/Glas} HR-Faktor von Glasseite ins AD-Innere		11,4	+/- 18-30 %			
x f _{Opt/Pix}	HR-Faktor für verwendete geom. Auflösung	1,13	+/- 27-12 %			
$=\Delta T_{AD-In.,Imax}$	Übertemp. im AD-Inneren bei Nennlast	53 K	+/- 33 %			
Copyright 2013 • Bernhard Weinreich • Solarschmiede GmbH • DGZfP Thermografie-Kolloquium 2013 • Seite 25						

